Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family.

Identifieur interne : 002A63 ( Main/Exploration ); précédent : 002A62; suivant : 002A64

Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family.

Auteurs : Caiyun He [République populaire de Chine] ; Kai Cui ; Aiguo Duan ; Yanfei Zeng ; Jianguo Zhang

Source :

RBID : pubmed:22957200

Abstract

As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.

DOI: 10.1002/ece3.299
PubMed: 22957200
PubMed Central: PMC3434002


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family.</title>
<author>
<name sortKey="He, Caiyun" sort="He, Caiyun" uniqKey="He C" first="Caiyun" last="He">Caiyun He</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, 100091, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Kai" sort="Cui, Kai" uniqKey="Cui K" first="Kai" last="Cui">Kai Cui</name>
</author>
<author>
<name sortKey="Duan, Aiguo" sort="Duan, Aiguo" uniqKey="Duan A" first="Aiguo" last="Duan">Aiguo Duan</name>
</author>
<author>
<name sortKey="Zeng, Yanfei" sort="Zeng, Yanfei" uniqKey="Zeng Y" first="Yanfei" last="Zeng">Yanfei Zeng</name>
</author>
<author>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22957200</idno>
<idno type="pmid">22957200</idno>
<idno type="doi">10.1002/ece3.299</idno>
<idno type="pmc">PMC3434002</idno>
<idno type="wicri:Area/Main/Corpus">002893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002893</idno>
<idno type="wicri:Area/Main/Curation">002893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002893</idno>
<idno type="wicri:Area/Main/Exploration">002893</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family.</title>
<author>
<name sortKey="He, Caiyun" sort="He, Caiyun" uniqKey="He C" first="Caiyun" last="He">Caiyun He</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, 100091, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cui, Kai" sort="Cui, Kai" uniqKey="Cui K" first="Kai" last="Cui">Kai Cui</name>
</author>
<author>
<name sortKey="Duan, Aiguo" sort="Duan, Aiguo" uniqKey="Duan A" first="Aiguo" last="Duan">Aiguo Duan</name>
</author>
<author>
<name sortKey="Zeng, Yanfei" sort="Zeng, Yanfei" uniqKey="Zeng Y" first="Yanfei" last="Zeng">Yanfei Zeng</name>
</author>
<author>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="eISSN">2045-7758</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22957200</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-7758</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family.</ArticleTitle>
<Pagination>
<MedlinePgn>1996-2004</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.299</ELocationID>
<Abstract>
<AbstractText>As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Caiyun</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, 100091, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Aiguo</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Yanfei</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jianguo</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Asymmetric evolutionary rates</Keyword>
<Keyword MajorTopicYN="N">KT/HAK/KUP family</Keyword>
<Keyword MajorTopicYN="N">segmental duplication</Keyword>
<Keyword MajorTopicYN="N">tandem duplication.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22957200</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.299</ArticleId>
<ArticleId IdType="pmc">PMC3434002</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2006 Apr;16(4):510-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(2):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(12):3209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16936223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Sep;16(9):1159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16951135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2006;1:e85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(17):5851-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Nov;280(5):437-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18810495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2009 Mar;36(3):161-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1989;31(1):304-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2687099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1993 May;10(3):677-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1997 Jul;28(3):405-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9223186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1997 Sep 29;415(2):206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9350997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Dec;9(12):2281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9437867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Jan;17(1):32-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1646-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Nov;50(4-5):623-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):784-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:575-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Jun 1;4:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15171794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jul;17(7):789-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15242173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 Oct;56(3):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Jan;23(1):10-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2006 Jun;62(6):701-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752210</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cui, Kai" sort="Cui, Kai" uniqKey="Cui K" first="Kai" last="Cui">Kai Cui</name>
<name sortKey="Duan, Aiguo" sort="Duan, Aiguo" uniqKey="Duan A" first="Aiguo" last="Duan">Aiguo Duan</name>
<name sortKey="Zeng, Yanfei" sort="Zeng, Yanfei" uniqKey="Zeng Y" first="Yanfei" last="Zeng">Yanfei Zeng</name>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="He, Caiyun" sort="He, Caiyun" uniqKey="He C" first="Caiyun" last="He">Caiyun He</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22957200
   |texte=   Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22957200" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020